The factory of the future is here, and it's digitized

Scott Kirsner for Boston Globe:  We’re living through a moment where the technology for making stuff is making startling leaps daily — progress that in an earlier era would have stretched out over decades. If you were an armorer in medieval Europe, making a chain mail garment was a time-consuming job. Each individual ring of iron had to be forged, and then the rings were riveted together, a process that would take weeks or months, depending on how many apprentices you had.

This past Tuesday, I dropped by the Somerville offices of a startup called Formlabs and watched as a 3-D printer worked on the equivalent of a chain mail shirt — one designed by Nervous System, a nearby design firm. The printer would make 11,300 individual links out of a hard plastic material in hours.

Even in the age of 3-D printing, Nervous Systemcofounder Jessica Rosenkrantz says, “We’ve never printed the design before, or really anything quite like it.” It’s far more intricate than similar pieces her firm has shown at the Museum of Modern Art in New York or the Museum of Fine Arts in Boston.

The Digital Factory — a conference held at MIT on Monday — will highlight many of the people and companies at the vanguard of this manufacturing revolution. It’s being organized by Formlabs and another Somerville startup, Tulip Interfaces, that were both born at MIT.  Full Article:

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

T.J. Davies' Retention Knobs

T.J. Davies' Retention Knobs

Our retention knobs are manufactured above international standards or to machine builder specifications. Retention knobs are manufactured utilizing AMS-6274/AISI-8620 alloy steel drawn in the United States. Threads are single-pointed on our lathes while manufacturing all other retention knob features to ensure high concentricity. Our process ensures that our threads are balanced (lead in/lead out at 180 degrees.) Each retention knob is carburized (hardened) to 58-62HRC, and case depth is .020-.030. Core hardness 40HRC. Each retention knob is coated utilizing a hot black oxide coating to military specifications. Our retention knobs are 100% covered in black oxide to prevent rust. All retention knob surfaces (not just mating surfaces) have a precision finish of 32 RMA micro or better: ISO grade 6N. Each retention knob is magnetic particle tested and tested at 2.5 times the pulling force of the drawbar. Certifications are maintained for each step in the manufacturing process for traceability.