CNC Machining and 3-D Printing: Complementary Techniques Shape the Future
3-D printing has gained a great deal of traction in the past few years. Its popularity is expected to grow as the techniques become more refined and focused. Unlike some experts warned, though, 3-D printing is not poised to replace CNC machining. Forward-thinking companies combine the properties of both techniques to develop strategies that meet their clients' needs.
Medical Device Industry
Medical implants and devices can be created specifically to address a patient's unique needs, reducing wait times for those suffering from life-threatening diseases and illnesses. These breakthroughs not only have the potential to improve the patient's quality of life, they could even prolong it.
Because 3-D printing is not yet refined enough to provide the durability, precise design and balance that medical device manufacturers need to fully adopt the technology, CNC machining continues to be their preferred method. This hasn't stopped industry pioneers from exploring other options, though. Using 3-D printing to design a human organ holds significant promise for increasing the longevity and quality of human life. Because this technology relies on biological tissue, its development is somewhat limited in scope however.
Aerospace Development and Design
In most cases, plastic mediums that have been a mainstay in the 3-D printing industry, like composites or those that are hardened, have found only a limited use in the design and development of aerospace components. With 3-D printers that work with aluminum and metal materials entering the market, however, that limitation is likely to change in the coming months.
Metal additive manufacturing -- a hybrid of traditional CNC machining and 3-D printing -- provides manufacturers in the industry with the project control and flexibility they need. One partnership between the United States Air Force and Lockheed Martin Space Systems centers on the design and development of a satellite that uses advanced extremely high frequencies. Dubbed the AEHF-6, the satellite, which features a 3-D printed aluminum remote interface unit, is expected to launch sometime in 2018.
Automotive Industry
The automotive industry has embraced 3-D printing as a companion technique of CNC machining. Ford, for example, has a 3-D printer that is capable of printing auto parts in a variety of shapes and sizes. While this is primarily been limited to spoilers for their models that are marked as performance vehicles, the auto maker is moving ahead with other uses.
Hybrid printing is already found throughout the industry. Currently, the research and development are focused on exploring alternative materials. PEEK, a polymer designed of a highly specialized composite, is one such next-gen material that has the potential to replace metal in some applications.
While 3-D printing is a concept that will continue to disrupt the manufacturing industry, it is not likely to fully replace CNC machining anytime in the near future. Instead, these complementary technologies will continue to refine -- and redefine -- their relationship with each other. The result? Products, materials and innovations that change lives and facilitate the exploration of boundaries.
Featured Product
PI USA - Improve Manufacturing Precision and Speed with Hexapods
Hexapods provide high precision motion in 6 axes. Read how a hexapod improves manufacturing of aerospace parts in an Airbus supported study.