Danforth Plant Science Center Develops Versatile Field Phenotyping to Benefit Farmers

Solar-powered PheNode Is Set for Investment Stage

ST. LOUIS, MO - November 1, 2016 - Researchers at the Donald Danforth Plant Science Center, a not-for-profit research institute with a mission to improve the human condition through plant science, are leveraging expertise in crop phenotyping with the development of the PheNode, a ‘smart, farm-ready, solar-powered environmental sensor and phenotyping station for crops.

"With a suite of diverse sensors on the PheNode, we can continuously monitor field crops for growth rate, stem diameter, height, leaf shape, leaf angles, canopy closure, light interception and the relationship of these traits to enhanced canopy photosynthesis. The PheNode will help crop science innovators to identify ideal canopy architectural and leaf metabolic features to breed crops for increased yield," said Nadia Shakoor, Ph.D., research scientist in the Todd Mockler laboratory. "We see a need for more sustainable crop production with minimal water and energy inputs, and a need to anticipate changing environmental conditions, like elevated CO2 levels, that will affect farming." The prototype was developed by Shakoor, Mockler and colleagues, and was recently highlighted at the 2016 Ag Innovation Showcase and SXSW Eco in Austin, Texas.
Modular sensors and cameras on the PheNode take real-time measurements of temperature, humidity, CO2, rainfall, air quality, wind speed, light quantity and quality, soil moisture, soil temperature, pH and nutrient composition. The PheNode allows researchers, breeders and farmers to monitor directly within the plant canopy, providing crucial information for both crop improvement and precision agriculture.
"Direct canopy measurements are particularly challenging due to inherent difficulties in taking the measurements, high levels of temporal and spatial variation, and an inability to generalize local measurements to the landscape scale," continued Shakoor. "The PheNode provides growers with an affordable and comprehensive crop phenotyping system that will provide a snapshot into a crop plants environment."
A modular minirhizotron system is incorporated into one version of the PheNode to take images of crop roots in the soil, allowing observation of root growth and development in real time. The PheNode is powered by a solar panel with a backup battery, and all sensor data is stored locally and transmitted via Bluetooth or WiFi.
Development of the PheNode is part of a larger effort at the Danforth Center to take discovery from the laboratory to the marketplace. "The PheNode uses quite sophisticated imaging and sensor technology that we use in advanced research to understand how plants work," said James Carrington, Ph.D., president of the Danforth Center. "Delivering it to the farm will help growers make better decisions to manage their crops, reduce their environmental footprint and costs."
"When the PheNode was presented in front of investors, farmers and the industry at Ag Innovation Showcase, we received positive feedback and found a niche market demanding a product like this in the field," said Mockler. "The positive feedback validates the investment of the Department of Energys ARPA-E, the TERRA program which has partially supported PheNode development. The next phase for the PheNode is aligning with investors who seek to impact agriculture by giving farmers and breeders the ability to have and use vital information at their fingertips."
About The Donald Danforth Plant Science Center
Founded in 1998, the Donald Danforth Plant Science Center is a not-for-profit research institute with a mission to improve the human condition through plant science. Research, education and outreach aim to have impact at the nexus of food security and the environment, and position the St. Louis region as a world center for plant science. The Centers work is funded through competitive grants from many sources, including the National Institutes of Health, U.S. Department of Energy, National Science Foundation and the Bill & Melinda Gates Foundation.
To keep up to date with Danforth Centers current operations and areas of research, please visit, www.danforthcenter.org, featuring information on Center scientists, news and the "Roots & Shoots" blog. Follow us on Twitter at @DanforthCenter.

Featured Product

Model TR1 Tru-Trac

Model TR1 Tru-Trac

The Model TR1 Tru-Trac® linear measurement solution is a versatile option for tracking velocity, position, or distance over a wide variety of surfaces. An integrated encoder, measuring wheel, and spring-loaded torsion arm in one, compact unit, the Model TR1 is easy to install. The spring-loaded torsion arm offers adjustable torsion load, allowing the Model TR1 to be mounted in almost any orientation - even upside-down. The threaded shaft on the pivot axis is field reversible, providing mounting access from either side. With operating speeds up to 3000 feet per minute, a wide variety of configuration options - including multiple wheel material options - and a housing made from a durable, conductive composite material that minimizes static buildup, the Model TR1 Tru-Trac® is the ideal solution for countless applications.